圆周率的历史作用
Posted 圆周率
篇首语:虎瘦雄心在,人穷志不短。本文由小常识网(cha138.com)小编为大家整理,主要介绍了圆周率的历史作用相关的知识,希望对你有一定的参考价值。
圆周率的历史作用
圆的周长与直径之比是个与圆的大小无关的一个常数,人们称之为圆周率。
巴比伦人最早发现了圆周率。
1600年,英国威廉奥托兰特首先使用pi表示圆周率,因为pi是希腊之“圆周”的第一个字母,而是“直径”的第一字母。
当=1时,圆周率为pi。
1706年,英国的琼斯首先使用pi。
1737年,欧拉在其著作中使用后来被数学家广泛接受,一直沿用至今。
pi是一个非常重要的常数,一位德国数学家评论道:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的重要标志,古今中外很多数学家都孜孜不倦地寻求过值的计算方法。
从埃及道巴比伦到中国一直都在对圆周率的精确值做出研究。
公元前200年间古希腊数学家阿基米德首先从理论上给出pi值的正确求法。
他专门写了一篇论文《圆的度量》用圆外切与内接多边形的周长以大小两个方向上同时逐步逼近圆的周长,巧妙地求得pi。
这是第一次在科学中创用上下界来确定近似值,公元前150年左右,另一位古希腊数学家托勒密用弦表法(以1的圆心角所对弦长乘以360再除以圆的直径)给出了pi的近似值3.1416。
公元200年间,我国数学家刘薇在注释《九章算术》中独立发现了用几何方法求圆周率的方法,称之为“割圆术”。
刘薇与阿基米德的方法有所不同,他只从圆内接正六边形入手,也是不断将边数加倍,只是刘薇用正多边形的面积逼近圆的面积。
刘薇认为:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣。”包含有朴素的极限思想。
公元460年,南朝的祖冲之利用刘薇的割圆术,把值算到小数点后第七位3.1415926。
这个具有七位小数的圆周率当时是世界首次,祖冲之还找到了两个分数22、7和355、113。
用分数来代替pi,极大地简化了计算,这种思想比西方早一千年。
可见当时的中国数学家对圆周率的值作了比较的精确计算为中国日后的数学发展起着举足轻重的作用。
1579年法国韦达发现了关系式,首次摆脱了几何学的陈旧方法,寻求到了pi的解析表达式。
1650年瓦里斯把pi表示成无穷乘积,无穷连分数,无穷级数等各种值表达式纷纷出现,值计算精度也迅速增加。
稍后,莱布尼茨发现接着欧拉证明了这些公式的计算量都很大。
尽管形式非常简单,pi值的计算方法的最大突破是找到了它的反正切函数表达式。
1706年英国数学家麦欣首先发现了其计算速度远远超过方典算法。
某个古代文牍员以不同长度的半径画了一些圆,他取了每个圆的直径(将半径加倍)只是为了好玩。
他决定以每个圆的直径为单位长度在圆周上丈量。
令人惊奇的是,不管圆的大小如何,圆周总是直径的3倍多一点。
由于pi与圆的特殊关系,故数学家设计用来计算出圆的面积和周长的新方法。
对于计算各种数量,例如体积,面积,周长以及任何与圆,圆柱,圆锥,球有关的数量。
是必要的且只要pi=3.14。
本世纪五十年代以后,圆周率pi的计算开始借助于电子计算机,从而出现了新的突破。
目前有人宣称已经把pi计算到了亿位甚至十亿位以上的有效数字。
在科学领域计算中,圆周率一般要求10位数值已够用。
如用它计算地球的周长,误差只以厘米计。
更精密的计算最多需要的30位数值。
因此,人们孜孜以求圆周率的多位数值已非实际需要。
现在计算的几百万位小数多是为了验证计算公式的效能和计算机将依靠来检验它们的能力,并测试它们的准确度和速率。
当然也有打破原记录的心情驱使,世界记录毕竟是人类向往的目标之一。
人们试图从统计上获悉的各位数字式否有某种规律。
竞争还在继续,正如有人所说,数学家探索中的进程也像这个数一样:永不循环,无止无休。
在进行计算的同时,数学家们对圆周率的理论性质进行了研究。
1761年,数学家兰伯特证明了pi是一个无理数,即它是一个无限不循环的小数,不能表示成任何两个整数之比。
1794年,法国数学家勒让德又证明pi是无理数,1882年,德国数学家林德曼证明了圆周率是一个超越数,即它不是任何一个整系数代数多项式方程的根。
林德曼也因此间接解决了困惑人们两千多年的化圆为方问题,说明了该问题尺规作图的不可能性。
还有人对与其它数字的联系进行研究。
如1929年,苏联数学家格尔丰德证明了pi是超越数。
随着数学的不断发展,的应用不再局限于求圆的面积和周长,椭圆,萁舌线,旋轮线等面积公式中也都出现了pi值。
此外,一些函数的定义,积分的计算,指数的构成等都要用到pi。
例如,1777年,法国数学家蒲丰研究投针问题,将一根长为l的的针任意投到画有间距为a(a>l)的平行线的平面上 ,他得到得结论是:该针与任一平行线相交的概率是p=2l/api,圆周率与随机现象产生了密切联系即pi在概率中也有作用。
在数学中还有一个重要公式pi=4log(1-i/1+i)^i/2将圆周率与虚数单位i联系起来。
1740年,欧拉进一步得到关系式e^ipi+1=0,将数学中5个重要的数学最重要的两个运算符号统一在一个公式中,令人拍案叫绝!在数论中,法国人沙特尔1904年得到一个定理:任一写下两个整数,则它们互素的概率是6、pi,一个简单的圆周率pi几乎无所不在。
背诵圆周率能够锻炼人的记忆力,我国桥梁专家茅以升年轻时就能背诵圆周率锻炼记忆力。
晚年时仍能轻松地背出圆周率的100位数值。
可见圆周率pi不仅与我们身边的数学紧密相连更与我们的生活息息相关。
俗话说得好,“有理走遍天下,无理寸步难行”圆周率pi就好比这个“理”。
有了圆周率pi不仅解决了困惑众多数学家的三大著名几何问题之一的化圆为方的不可能性更为后续的数学研究奠定了基础。
相关参考
祖冲之与圆周率 祖冲之不但精通天文、历法,他在数学方面的贡献,特别对"圆周率"研究的杰出成就,更是超越前代,在世界数学史上放射着异彩。 我们都知道圆周率就是圆的周长和同一圆的直
亚洲中国:魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这
亚洲中国:魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这
魏晋南北朝是我国古代数学发展的高峰时期,其中成就最为突出的当数祖冲之。他求得的圆周率值,是举世公认的重大数学成就,在世界数学发展史上占有重要地位。祖冲之(公元429—500),蓟县(北京西南)人。祖父
祖冲之与圆周率 祖冲之不但精通天文、历法,他在数学方面的贡献,特别对"圆周率"研究的杰出成就,更是超越前代,在世界数学史上放射着异彩。 我们都知道圆周率就是圆的周长和同一圆的直
历史人物 三国东吴常侍王蕃简介,是求出圆周率为3.1555的数学家
王蕃(228—266年),字永元。庐江西南松滋县人(今安徽宿松县)。三国时期吴国天文学家、数学家。王蕃历任吴国尚书郎、散骑中常侍、夏口监军、常侍等职。王蕃依据张衡学说,结合观察天文实践,重制浑天仪,用
圆周率是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。圆周率符号的由来π(读
中国社会的发展具有和西方不同的特点,因此数学的发展也略有不同。在中国古代,数学多为农业生产而服务,应天文和历法的要求,古代数学走出了不同于西方的独立的体系。在悠悠历史长河中,有很多数学家在不同领域做出
祖冲之是南朝伟大的数学家和天文学家,他是世界上把圆周率算到第七位的第一人,所以圆周率又被称为祖率。他在数学和天文学上的贡献,对后世的发展有着很深远的影响。下面,小编就和大家一起去了解祖冲之的生平以及他
祖冲之最大的贡献就是将圆周率精确到了小数点之后的七位,也就是精确到了3.1415926到3.1415927之间,这一成果在当时的世界上最先进的,别的国家直到十五世纪才有人将圆周率精确到这个程度,所以说