1.6386E,19 19 e数字便民
Posted
篇首语:在学习上做一眼勤、手勤、脑勤,就可以成为有学问的人。本文为你选取作文1.6386E,19 19 e数字便民四篇,希望能帮到你。
本文目录
1.6386E,19 19 e数字便民
第一篇:《彩票数据和程序》
中奖概率
A =
[2.0000e-007 .0000e-007 1.000e-00 2.6100e-004 0 0 0 2.0000e-007 .0000e-007 1.000e-00 2.6100e-004 3.4200e-003 4.2039e-002 0 2.0000e-007 .0000e-007 1.000e-00 2.6100e-004 3.4200e-003 4.2039e-002 0 2.0000e-007 .0000e-007 1.000e-00 2.6100e-004 3.4200e-003 4.2039e-002 0
6.4071e-007 4.449e-006 9.414e-00 2.2e-004 2.000e-003 4.7000e-003 0
6.4071e-007 1.4096e-00 .473e-00 .02e-004 2.2000e-010 1.400e-009 0
4.9121e-007 3.43e-006 7.646e-00 2.2694e-004 2.4000e-003 4.0000e-003 2.600e-002
4.9121e-007 3.43e-006 7.646e-00 2.2694e-004 2.4000e-003 4.0000e-003 2.600e-002
4.9121e-007 3.43e-006 7.646e-00 2.2694e-004 2.4000e-003 4.0000e-003 2.600e-002
3.029e-007 2.2662e-006 6.1227e-00 1.36e-004 2.0000e-003 3.4000e-003 2.3600e-002
3.029e-007 2.2662e-006 6.1227e-00 1.36e-004 2.0000e-003 3.4000e-003 0
2.9710e-007 2.0797e-006 4.9913e-00 1.4974e-004 1.7000e-003 2.7000e-003 0
2.9710e-007 2.0797e-006 4.9913e-00 1.4974e-004 1.7000e-003 2.7000e-003 0
2.9710e-007 2.0797e-006 4.9913e-00 1.4974e-004 1.7000e-003 2.7000e-003 0
2.340e-007 1.636e-006 4.0964e-00 1.229e-004 1.000e-003 2.000e-003 0
2.340e-007 1.636e-006 4.0964e-00 1.229e-004 1.000e-003 2.000e-003 1.00e-002
1.9e-007 1.3012e-006 3.331e-00 1.0149e-004 1.3000e-003 2.1000e-003 0
1.9e-007 1.3012e-006 3.331e-00 1.0149e-004 1.3000e-003 2.1000e-003 1.6900e-002
1.471e-007 1.0410e-006 2.106e-00 .431e-00 1.1000e-003 1.000e-003 0
1.471e-007 1.0410e-006 2.106e-00 .431e-00 1.1000e-003 1.000e-003 1.200e-00
1.471e-007 1.0410e-006 2.106e-00 .431e-00 1.1000e-003 1.000e-003 1.200e-002
1.471e-007 1.0410e-006 2.106e-00 .431e-00 1.1000e-003 1.000e-003 1.200e-002
1.471e-007 2.9147e-00 1.2000e-003 1.7100e-002 1.0660e-001 0 0
1.1979e-007 3.4740e-006 2.044e-00 2.912e-004 7.294e-004 6.6000e-010 .000e-010
1.1979e-007 3.4740e-006 2.044e-00 2.912e-004 7.294e-004 6.6000e-010 0
1.1979e-007 .36e-007 2.340e-00 7.0439e-00 9.920e-004 1.6000e-003 1.3700e-002
9.7130e-00 6.7991e-007 1.9717e-00 .912e-00 .213e-004 1.300e-003 0
2.603e-007 1.632e-006 .14e-00 1.296e-004 2.1000e-003 2.000e-003 0
1.310e-007 9.10e-007 4.9437e-00 9.74e-00 2.6000e-003 0 0]
概率求解
funtion ai1()
=29;
n=7;
l=nhoosek(,n)*nhoosek(-n,1);
p1=nhoosek(-n,1);
p2=nhoosek(n,n-1)*nhoosek(-n-1,1);
p3=nhoosek(n,n-1)*nhoosek(-n-1,2);
p4=nhoosek(n,n-2)*nhoosek(-n-1,2);
p=nhoosek(n,n-2)*nhoosek(-n-1,3);
p6=nhoosek(n,n-3)*nhoosek(-n-1,3);
p7=nhoosek(n,n-3)*nhoosek(-n-1,4);
forat lon
p=[p1 p2 p3 p4 p p6 p7]/l
funtion ai2()
=input('=','s');
n=input('n=','t');
l=nhoosek(,n)*nhoosek(-n,1);
p1=nhoosek(-n,1);
p2=nhoosek(-n-1,1);
p3=nhoosek(n,n-1)*nhoosek(-n-1,1);
p4=nhoosek(n.n-1)*nhoosek(-n-1,2);
p=nhoosek(n,n-2)*nhoosek(-n-1,2);
p6=nhoosek(n,n-2)*nhoosek(-n-1,3);
p7=nhoosek(n,n-3)*nhoosek(-n-1,3);
forat lon
p
funtion boai()
options=optiset('LareSal','off');
D0=[37 7 0.7 0.2 0.1 00 0 20 10];
vlb=[0 0 0 0 0 100 0 0 0];
vub=[10 10 10 10 10 1000 10 100 100 ];1.636E,19.
[D,val]=finon(@fun,D0,[],[],[],[],vlb,vub,@funon,options);
forat short e;
D
val=-val
funtion f=fun(D)
lobal D;
p=ai1(D(1),D(2));
a=su(p);u=1e*(p(1)^2+p(2)^2+p(3)^2)/(p(4)*D(6)+p()*D(7)+p(6)*D()+p(7)*D(9));
k=-1e*(abs(p(1)*p(1)-p(2)^2)+abs(p(2)^2-p(3)^2))-abs(p(4)*D(6)-p()*D(7))-abs(p()*D(7)-p(6)*D())-abs(p(6)*D()-p(7)*D(9));
f=a*u*k;
return
funtion [,e]=funon(D)
lobal D;
%p=@ai1(D(1),N)
%for i=1:,
p=ai1(D(1),D(2));
=[D(3)-0.;0.-D(3);D(3)*1e*(1-p(4)*D(6)+p()*D(7)+p(6)*D()+p(7)*D(9))-e6;6e-D(3)*1e*(1-p(4)*D(6)+p()*D(7)+p(6)*D()+p(7)*D(9));p(i)-p(i+1);-D(1);D(1)-7;29-D(2);D(2)-60];
e=[D(3)+D()+D(4)-1] ;
return
funtion p=ai1(,n)
=round();n=round(n);
l=nhoosek(,n)*nhoosek(-n,1);
p1=nhoosek(-n,1);
p2=nhoosek(n,n-1)*nhoosek(-n-1,1);
p3=nhoosek(n,n-1)*nhoosek(-n-1,2);
p4=nhoosek(n,n-2)*nhoosek(-n-1,2);
p=nhoosek(n,n-2)*nhoosek(-n-1,3);
p6=nhoosek(n,n-3)*nhoosek(-n-1,3);
p7=nhoosek(n,n-3)*nhoosek(-n-1,4);
forat short e
p=[p1 p2 p3 p4 p p6 p7]/l
return
第二篇:《atlae》
3-1.什么是线性系统?其主要的特征是什么?
答:凡是用线性微分方程来描述其动态特性的系统称为线性系统。
特征:可运用叠加原理进行计算。
3-2.
(1) f(t)-k*y(t)=d²y/dt²
(2 ) f(t )-k1*(k2*y(t)-f(t)/k2-k1)-k2*(y(t)*k1-f(t)/k1-k2)=d²y(t)/dt²
3-3
(a)设i1为流过R1的电流,i为总电流,则有
U0=Ri+1/2*∫idt
Ui-U0=i1*R1
Ui-U0=1/1*∫(i-i1)dt
化简得
1*R2*(U0)¨+(1+R2/R1+1/2)*(U0)’+U0/2*R1
=1*R2 (Ui)¨=(R2/R1+1/2)Ui’+Ui/2*R11.636E,19.
(b)
设电流为I,则有
Ui=U0+R1*i+1/1*∫idt
U0=1/2*∫idt+ R2*i
3-4
=J(θ)+*¨θ’+Rk*(Rθ’-x)
K(Rθ-x)=x¨+x’
消去中间x得
*Jθ(4)+(*+j) θ(3)+R²*k*+*+Jk) (θ) ¨+k(*R²+) θ’
=*¨+*’+k*
3-
(1)(s³+1s²+0s+00)Y(S)=(s²+2s)U(s) (2) (s²+2s)Y(S)=(0.s)U(s)
=Y(S)/U(S) =Y(S)/U(S)
nu=[1 2 0] nu=[0. 0]
nu = nu =
1 2 0 0.000 0
>> den=[1 1 0 00] den=[ 2 0]
den = den =
1 1 0 00 2 0
>> =tf(nu,den) >> =tf(nu,den)
Transfer funtion: Transfer funtion:
s^2 + 2 s 0. s
------------------------- ------------
s^3 + 1 s^2 + 0 s + 0 s^2 + 2 s
(3) (s²+3s+6+4*1/s)Y(S)=(4s)U(s)
=Y(S)/U(S)1.636E,19.
nu=[4 0]
nu =
4 0
>> den=[1 3 6 4]
den =
1 3 6 4
>> =tf(nu,den)
Transfer funtion:
4 s
---------------------
s^3 + 3 s^2 + 6 s + ³
3-6
由传递函数定义得
Xi=1/s
Y=1/s-1/(s+2)+2/(s+1)
Y/Xi=(2s²+6s+2)/(s²+3s+2)
3-
(1) nu=[1 3 291 1093 1700]
nu =
1 3 291 1093 1700
>> den=[1 29 0 241 464 6 4629 1700]
den =
1 29 0 241 464 6 4629 1700
>> =tf(nu,den)
Transfer funtion:
s^4 + 3 s^3 + 291 s^2 + 1093 s + 1700
--------------------------------------------------------------
s^7 + 29 s^6 + 241 s^4 + 464 s^3 + 6 s^2 + 4629 s + 1700
sys_pk=pk(sys_tf)
ero/pole/ain:
(s+2) (s+4) (s^2 + 6s + 17)
---------------------------------------------------------------------------------
(s+29) (s^2 + 1.379s + 0.664) (s^2 + 0.494s + 1.032) (s^2 - 1.902s + 9.7)
(2) nu=1*[1 1]
nu =
1 1
>> den=onv(onv([1 3],[1 ]),[1 1])
den =
1 23 13 22
>> sys=tf(nu,den)
Transfer funtion:
1 s + 1
--------------------------
s^3 + 23 s^2 + 13 s + 22
>> =-1;
p=[-3 - -1];
k=1;
sys=pk(,p,k)
ero/pole/ain:
1 (s+1)
------------------
(s+3) (s+) (s+1)
(3)
sys1=pk([0,-1,-2,-2],[-1,1],100);
sys2=tf([1,3,2],[1,2,,2]);
sys3=tf(1,[1,2,4]);
sys4=tf(1,[1,2,4])
sys=sys1*sys2*sys3*sys4
ero/pole/ain:
100 s (s+1)^2 (s+2)^3
----------------------------------------------------------------
(s+1) (s+0.466) (s-1) (s^2 + 2s + 4)^2 (s^2 + 1.33s + 4.24)
>> sys_tf=tf(sys)
Transfer funtion:
100 s^6 + 00 s^ + 200 s^4 + 300 s^3 + 200 s^2 + 00 s1.636E,19.
------------------------------------------------------------------------------ s^9 + 6 s^ + 24 s^7 + 6 s^6 + 91 s^ + 74 s^4 - 4 s^3 - 104 s^2 - 112 s – 32 3-9
3-9 (1) 解
>> A=[,2,1,0;0,4,6,0;0,-3,-,0;0,-3,-6,-1];
>> B=[1;2;3;4];
>> =[1,2,,2];
>> D=eros(1,1)
>> sys=ss(A,B,,D)
a =
x1 x2 x3 x4
x1 2 1 0
x2 0 4 6 0
x3 0 -3 - 0
x4 0 -3 -6 -1
b =
u1
x1 11.636E,19.
x2 2
x3 3
x4 4
=
x1 x2 x3 x4
y1 1 2 2
d =
u1
y1 0
ontinuous-tie odel.
>> sys_tf=tf(sys)
Transfer funtion:
2 s^3 - 11 s^2 + 317 s + 46 -------------------------------
s^4 - 3 s^3 - 11 s^2 + 3 s + 10
>> sys_pk=pk(sys)
ero/pole/ain:
2 (s+0.1346) (s^2 - 6.99s + 12.21) ------------------------------------- (s-) (s+2) (s+1) (s-1)
(2)解
>> A=[2,2,1;1,3,1;1,2,2];
>> B=[3;3;4];
>> =[1,0,0];
>> D=eros(1,1);
>> sys=ss(A,B,,D)
a =
第三篇:《E级PS技术设计书》
PS控制测量技术总结
相关参考