知名人物 杨武之人物简介
Posted 华罗庚
篇首语:知识是一种快乐,而好奇则是知识的萌芽。本文由小常识网(cha138.com)小编为大家整理,主要介绍了知名人物 杨武之人物简介相关的知识,希望对你有一定的参考价值。
知名人物 杨武之人物简介
·杨武之
杨武之,数学家,数学教育家。长期在清华大学和西南联合大学数学系任系主任或代主任。是我国早期从事现代数论和代数学教学与研究的学者。
杨武之,原名杨克纯,武之是他的号。1896年4月14日出生于安徽合肥。
杨武之的父亲杨邦盛,是清末的一名秀才,早年一直在私塾教书。后来去天津,在段芝贵的幕府中司“笔札”,做类似文书之类的事。1907年,因段芝贵失势,回家赋闲。次年,想到沈阳去谋职,不幸在旅社中染上鼠疫,竟而去世。杨武之的母亲姓王,在他9岁时 (1905) 也早故。所以,杨邦盛夫妇对杨武之的照料不多,生活多由叔父杨邦瑞安排。
1914年,杨武之在安徽省立第二中学毕业。这是一所很好的学校,为杨武之打下了良好的文化基础。是年秋,考入北京高等师范学校预科,为期一年,后入数理部本科。规定修业3年,于1918年毕业。这一学历,在当时的师范教育中属于最高的层次,各地争相聘用。最后,杨武之决心回到母校——安徽省立二中担任教员兼舍监(训育主任)。年少气盛的杨武之,在学校里施行严格的纪律,对一批纨绔子弟严加管束。学校规定,夜晚10时,关闭校门,使一批在外寻欢作乐而迟归的学生,不得其门而入。由此,一些不思上进的学生,对舍监杨武之大为不满,以至寻衅闹事,准备动武报复。闹事之后,因学生家长袒护闹事学生,希图不了了之。杨武之遂愤而辞职,转往安庆中学教书。这一事件对他刺激颇深,觉得一介书生,难以和腐败的政府及土豪劣绅相周旋。杨武之因此萌生 “科学救国” 的意念,希望以出国留学,振兴中华科学,发扬中华文明来改变中国的黑暗现实。在安庆教书期间,积极准备参加留学考试。
杨武之由父母作主,在幼年时即和同乡罗竹全之女罗孟华订亲,并于1919年完婚。罗孟华的文化不高,一直操持家务。他们夫妇之间感情甚笃,终身不渝。1922年,长子杨振宁出生。杨武之的备考也到了紧张阶段。
1923年春,杨武之顺利地通过安徽省的公费出国留学考试。随即离别妻子和未满周岁的儿子,只身赴美国留学。他先到美国西部的斯坦福大学读了三个学季的大学课程,取得学士学位。然后于1924年秋天转往芝加哥大学继续攻读。当时的芝加哥大学数学系已臻美国第一流水平,杨武之师从名家L. E. 迪克森(Dickson),研究代数学和数论。1926年以 《双线性型的不变量》一文获得硕士学位。两年之后,又以《华林问题的各种推广》,使杨武之成为中国因数论研究而成为博士的第一人。
1928年秋,杨武之学成归国,先在厦门大学任教一年,次年即被清华大学聘为数学系教授。此后,杨武之一直在清华大学(包括抗战时期的西南联合大学)任教,直到解放。1950年之后,留在上海复旦大学任数学教授。1973年5月12日,在上海逝世。
博士论文: 推进“棱锥数的华林问题”
杨武之的主要学术贡献是数论研究,尤其以华林(Waring)问题的工作著称。
中国的数论研究渊远流长。孙子定理,中国剩余定理,秦九韶的不定方程理论,都是享誉世界的名篇。但到明清之际,数论研究已远远落后于欧洲,到本世纪20年代,能研究现代的数论而发表创造性论文的中国人,当以杨武之为第一人。
所谓华林问题,是指下列猜想: 每个正整数都是4个平方数之和,9个立方数之和,一般地,g(k)个k次方数之和。1770年,J. -L. 拉格朗日 (Lagrange)证明了每个正整数确实是4个平方数之和,即g(2)=4。1909年,大数学家D. 希尔伯特(Hilbert)证明:g(k)必是有限数。1928年,杨武之的导师狄克逊证得:g(3)=9。另外,S.W. 贝尔(Baer)证明,凡大于23×1014的整数是8个立方数之和。于是狄克逊要杨武之考虑带系数的华林问题,即每个正整数f可否表示为
f=rx3+C7,
其中C7=x31+x32+…+x37,r=0,1,2,…,8.杨武之很快得到下述结果:
1. 凡是大于14.1×4016的正整数都可表示为rx3+C7,其中r=5,7。
2. 凡大于 (30.1)×4196的正整数都可表示为3x3+C7。
3. 凡大于23×1014的正整数都可表为8x3+C7。
4.凡大于23×1014的奇正整数都可表示为rx3+C7,其中r=2,4,6。
5. 凡大于23×1014的奇正整数的两倍,都可表为2x3+7。杨武之的博士论文还讨论了带系数的7次方数的表示等问题。
杨武之最好的工作是关于棱锥数的华林问题。棱锥数p(n)=1/6(n3-n)是三角形数f(n)=n/2(n+1)的推广。1640年,费马(Fermat)猜测每个正整数都是不超过3个三角形数之和。后来证明这是对的。至于每个正整数能表示为几个棱锥数之和,也陆续有人研究。1896年,W. J. 马耶(Maillet)首先得到,每个充分大的正整数是12个棱锥数之和。1928年,杨武之在博士论文里证明:
每个正整数都可写成9个棱锥数之和。
此结果在20余年内没有改进,直至G.N.沃森(Watson)在1952年将“9个”减为“8个”。到1991年为止,这仍是已证明了的最好结果。
电子计算机出现之后,许多人曾作过实际验算,认为除241个例外数之外,小于106的正整数都是5个棱锥数之和。1991年,杨振宁和邓越凡等人的计算表明,凡小于109的正整数,除了17,27,…,343867等241个例外数之外,都是4个棱锥数之和。他们猜想,除这241个数之外,表示任何正整数,只要4个棱锥数就够了。
杨武之的这篇博士论文,首先在美国数学会的会议上作了介绍 (1928年4月6日)。同年美国数学会通报第34卷,第412页上曾对此作了报道。以后全文发表于1931年的《清华理科报告》。
大学数学教育的先驱
杨武之一生从事数学教育,特别是在清华大学和西南联合大学执教并主持系务时期,培养和造就了两代数学人才,对中国现代数学的贡献很大。
1928年,清华留美预备学校改制为清华大学。郑之蕃、熊庆来先期来清华大学任教。1928年和1929年,孙光远与杨武之亦先后到校。这4位教授,加上唐培经、周鸿经两位教员,阵容极一时之盛。1930年,陈省身跟孙光远学几何。次年,华罗庚又来校跟杨武之研习数论。随后的学生又有许宝騄、柯召等人的到来。30年代的上半期,清华大学已成为国内最强的数学中心。
杨武之在清华大学讲授过很多代数课程,特别是30年代初开设的群论课,影响了大批的后学者。
抗战以后,清华大学与北京大学、南开大学并为西南联合大学。杨武之又担任数学系的系主任,以及清华大学数学研究生部的主任。战时的生活十分艰苦,但是西南联合大学数学系的学术生活并不贫乏,科学水平节节上升,这和杨武之的组织与领导是分不开的。
杨武之与华罗庚
华罗庚自学成才,踏进清华园的传奇故事已是尽人皆知,但是究竟清华园内的数学圈内怎样发现华罗庚的细节,现在已很难查考。应该说,唐培经、杨武之,熊庆来等先生都为华罗庚来清华大学作出过努力,而系主任熊庆来的支持,则是关键的一着。
华罗庚来到清华大学以后,选择数论为研究方向,而且集中研究华林问题,显然是受到杨武之的直接影响。华罗庚在1980年写给香港《广角镜》周刊的一封信说:“引我走上数论道路的是杨武之教授。”
华罗庚于1936年赴英国,追随G. H. 哈代(Hardy)学习解析数论,成绩卓著。杨武之为自己的学生超过自己而高兴非凡。1938年华罗庚回国后到西南联合大学任教。当时担任系主任的杨武之,不顾学校里的各种反对意见,向校方提出破格提升华罗庚的职务,即越过讲师、副教授直升正教授。起初校方以华罗庚未在英国拿博士学位而拒绝,后经杨武之力争,最终才得到同意。所以,华罗庚在上述给《广角镜》的信中也写道:“从英国回国,未经讲师、副教授,直接提我为正教授的又是杨武之教授。”
在西南联合大学时期,杨武之和华罗庚曾同住于昆明西北郊的大塘子村。两家过往很密。当年,华罗庚曾有一信给杨武之,内称: “古人云: 生我者父母,知我者鲍叔。我之鲍叔即杨师也。”
杨武之所师法的迪克森学派,在本世纪初的美国影响很大。后来由于英国、苏联等国的解析数论的兴起而渐渐式微。所以,杨武之的数论研究虽曾起过启蒙和推动的作用,可惜由于迪克森学派的衰落而未能发挥重大影响。中国数论学派,在华罗庚的领导下,获得了重大的发展。饮水思源,人们将会缅怀杨武之在早期所发挥的前驱作用。
晚年生活
杨武之于1948年底,搭机从北平返回南京,转赴昆明接家眷到上海,迎接解放。1950年清华大学没有续聘杨武之,他遂留在上海,任复旦大学数学系教授。清华大学的解聘,对杨武之打击甚大。50年代,他还在复旦大学讲过几门课,以后因患糖尿病,休养在家。
1957年,杨武之的长子杨振宁荣获诺贝尔物理学奖,使杨武之十分兴奋。他曾于1957、1960和1964年三度去日内瓦小住,与杨振宁欢聚,也会见了在海外的故友和学生,如陈省身等。这几次聚会,使杨振宁对新中国多了一些了解,直接影响他于1971年夏决定回大陆探亲,杨振宁遂成为最早访问中华人民共和国的海外知名学者之一。
杨武之晚年身体很差,很少出门。他喜爱传统文化,尤精围棋。他的诗作不多,有一首是写给陈省身的。诗曰:
冲破乌烟阔壮游,果然捷足占鳌头。
昔贤今圣遑多让,独步遥登百丈楼。
汉堡巴黎访大师,艺林学海植深基。
蒲城身手传高奇,畴史新添一健儿。
杨武之常说很喜欢自己名字中的“纯”字,确实,他为人的纯正宽厚,已成数学圈中人的口碑
简 历
1896年4月14日 出生于安徽合肥。
1914年 毕业于安徽省立第二中学。
1914—1918年 毕业于北京高等师范学校预科和数学系本科。
1918—1922年 任安徽省立第二中学及安徽省安庆中学教师。
1923—1928年 赴美国留学,在芝加哥大学获硕士和博士学位。
1928—1929年 任厦门大学教授。
1929—1937年 任清华大学教授。
1937—1946年 任西南联合大学教授。
1946—1949年 任清华大学教授。
1950—1973年 任上海复旦大学教授。
1973年5月12日 在上海逝世。
主要论著
1 Yang Ko-Chuen.The invariants of billinear forms,a dissertation for thedegree of Master of Science. Chicago,1926.
2 Yang Ko-Chuen. Various generalization of Waring’s problem. Chicago,1928 (Thesis,Chicago,1928).
3 K. C. Yang. Representation of Positive integer by Pyramidal numbers f(x)=x3-x/6,x=1,2,…. Science Report of Tsing Hua Univ. ,1931,A1:9—15.
4 K. C. Yang. Quadratic field without Euclid’s algorithm. Science Reportof the Tsing Hua Univ.,1935,A1: 261—264.
5 杨武之. 关于同余式的一个定理. 清华学报,1935,6 (2): 107.
相关参考
众所周知,杨振宁是第一位获得诺贝尔物理学奖的中国人,华罗庚是中国在世界上最有影响力的数学家之一。而这两位伟大科学家的成功都离不开一个人的帮助。那个人就是杨武之——杨振宁的父亲,华罗庚的恩师。杨武之,我
人物档案 本名:杨洪 字号:宗道 别称:杨王、杨武襄 谥号:武襄 国家:中国 民族:苗族 所处时代:明朝中期 祖籍:庐州合肥 出生地:应天府六合 出生时间:1381年 去世时
秦代人物本名:王翳所处时期:汉官职:杜衍侯出处:史乘(历史lishixinzhi.com)王翳人物王把项羽的地皮分红五块;封吕马童为中水侯,封王翳为杜衍侯,封杨喜为赤泉侯,封杨武为吴防侯,封吕胜为涅阳
人物档案 本名:杨洪 字号:宗道 别称:杨王、杨武襄 谥号:武襄 国家:中国 民族:苗族 所处时代:明朝中期 祖籍:庐州合肥 出生地:应天府六合 出生时间:1381年 去世时
历史人物 作为曾经的对手,刘邦在项羽死后还记得他们曾经“约为兄弟”吗?
“吾闻汉购我头千金,邑万户,吾为若德。”西楚霸王项羽说完这句话,拔剑自刎而死。项羽死后,“王翳取其头,馀骑相蹂践争项王,相杀者数十人。最其后,郎中骑杨喜,骑司马吕马童,郎中吕胜、杨武各得其一体。五人共
武强县历史文化悠久。西汉高祖六年(公元前201年),于今武强境南部置武强侯国,距今已有2200余年历史。这里曾是战国强秦破赵、北宋杨延昭抵御辽军的古战场,郎子头、杨武寨、堤南村等村名的来历对此进行了印
历史人物 杨嗣昌的杨嗣昌的生平介绍_杨嗣昌 西江月_杨嗣昌墓
本名:杨嗣昌别称:杨阁老、杨阁部、杨武陵、盐梅上将字号:字文弱,一字子微自号肥翁、肥居士,晚年号苦庵所处时代:明朝民族族群:汉人主要作品:《杨嗣昌集》主要成就:提出“四正六隅、十面张网”战略;玛瑙山大
项羽走投无路,自刎而死,汉将王翳得了项羽的头颅,杨喜、吕马童、吕胜、杨武各得到项羽身体的一部分,这些人拿着项羽尸身的一部分,回去后为此都被封了侯。也就是说,项羽虽然是自刎而死,但他的尸体是被肢解了。大
项羽走投无路,自刎而死,汉将王翳得了项羽的头颅,杨喜、吕马童、吕胜、杨武各得到项羽身体的一部分,这些人拿着项羽尸身的一部分,回去后为此都被封了侯。也就是说,项羽虽然是自刎而死,但他的尸体是被肢解了。大
昌义之生于安徽和县,是南北朝南齐、南梁时期的名将,曾跟随大将曹虎征战颇有战功。他跟随萧衍起兵、出征北魏、参与硖石之战、扼守钟离、大破北魏,缴获军粮、器械无数,为南梁立下汗马功劳。那么,昌义之的子女都有